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J. Phy?.. A: Mach. Gen. 26 (1993) 38E-3836. F’rinted in the UK 

On the link between different U-V pairs and related 
finite-gap solutions of the stationary axisymmetric Einstein 
equation 

D A Korotkint 
Department of Mathematics. Bilkent:University, Bilkenf 06533 Ankara, Turkey 

Received 10 August 1992. in final form 6 April 1993 

Abstract An explicit linli between finiteigap solutions of the stationary axisymmeuic Einstein 
equation found by Korotkin and Matveev is obtained. 

Recent progress in exact solutions of stationary axially symmetric (SAS) solutions of the 
Einstein equation was initiated in 1978 by Belinskii and Zakharov [41 and Maison [5]. 
The U-V pairs found there allowed one to consider this equation in the framework of the 
inverse scattering method. For~example, standard ‘dressing’ procedure gives the multisoliton 
solutions describing the m interaction of a few Kerr-NUT objects on an arbitrary background. 
The U-V pair of Belinskii and Zakharov (BZ) is related to~the SAS Einstein equation written 
in terms of the metric coefficients while the U-V pair of Maison corresponds to the Emst 
formulation, when the metric is expressed in terms of one complex-valued function-the 
Emst potential; once the Emst potential is known, the metric coefficient: may be found in 
quadratures. In a slightly different form the U-V pair of Maison was obtained in 1979 
by Neugebauer [6]; we shall use this formulation, calling it the Maison-Neugebauer (f”) 
U-V pair. 

The method of ~ficte-gap (algebro-geometric) integration allowing us to get a 
generalization of multisoliton solutions in terms of multidimensional theta-functions (see 
for the basic material and references [7-11]) was applied to the SAS Einstein equation in [2] 
(in the Emst formulation) and in [3] (in the memc foimulation); some propertie$ of algebro- 
geometric solutions were investigated in [12,131. These finite-gap solutions constitute the 
most general class of exact solutions of the SAS Einstein equation found so far. 

The natural question arising here is about the relationship between BZ and MN linear 
systems and related finitegap solutions. On the level of equations this link is obvious: this 
is the relation between the Emst potential and metric coefficients in terms of quadratures. 
On the level of associated U-V pairs the link is less evident; it was first established by 
Cosgrove [14] in a rather complicated form. Finally, on the level of finite-gap solutions this 
link is essentially more subtle as we should get explicit correspondence between axiomatic 
and analytical properties of @-functions solving associated linear systems. 

Here we get an explicit ‘dressing’ transformation between BZ and MN linear systems 
as a reduction of the Backlund~transformation of Conigan eta1 [I] between the SU(1,I) 
and SU(2)  selfdual Yang-Mills fields which.was described in [I61 on the level of related 
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3824 D A Korotkin 

linear systems. It allows one to establish explicit one-to-one correspondence between the 
finite-gap solutions of the SAS Einstein equation in the Emst formulation and the 'metric' 
formulation. 

The starting point is the following form of the line element of stationary axisymmetric 
space-time: 

ds2 = h(dp2 + dz2)  + gijdx'dxj i, j = 1,2 (1) 

where the real symmetric matrix g with signature (1.1) obeying the condition detg = -p2 
and conformal factor h depend only on (p,  2) .  

In terms of gi j  the Einstein equation may be written as follows: 

(PsPS- l )P  + ( P m  -* )z - 0  - detg=-p2. (2) 

Once (2) is solved, the factor h may be obtained in quadratures. 

the line element as follows: 
Choosing in (1) xi = f ('time' coordinate) and x2 = @ ('angle' coordinate), we rewrite 

ds2 = f -'[ezx(dp2 + dz') + p 2 2  d$ ] - f(& + Ad@)' 

where f, k and A are real-valued functions of (p.  z); matrix g takes the following form: 

An altemative form of (2) may be obtained introducing the complex-valued function 
(Emst potential) &(p, z) related to f ,  A and k as follows: 

where .$ = (l /f i)(z+ ip), are new complex coordinates; subscript .$ denotes the partial 
derivative in 6. Choice of the boundary conditions for the metric is equivalent to the choice 
of integrability constants in (4). 

In terms of E (2) takes the form of the Emst equation: 

(5) 

The connection matrices in the zerocurvature condition 

U, - V$ +[U, VI = 0 (6) 

for (2) found by Belinskii and Zakharov look as follows (we use the form with 'variable 
spectral parameter'; for the relation with the original U-V pair with derivative in the spectral 
parameter see [17]): 
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where A E C is a parameter called ‘spectral’. 
So (2) i s  a compatibility condition of the following linear system: 

Q,$ = u1w1 = VlY, (8) 

where W,(A, 4, g) is 2 x 2 matrix-valued function. 
For the Emst equation (5) the connection matrices are the following: 

where 

So ( 5 )  is a compatibility condition~of the linear system 

Qq = U2Q2 w* = v2w2 (11) 

where Qz(A, $, 5 )  is new 2 ’x  2 matrix-valued function. 
Functions Q1 and Yl, solving (8) and (1 1) respectively, play the central role in the 

application of the inverse scattering technique to (2) and (5). The canonical way to get 
the finite-gap (algebro-geometric) solutions is the following [lo, 81: first we present the 
system of axioms for the Q- function^ which provides the proper structure of its logarithmic 
derivatives Y E W ’  and YcQ-’ according to (7) or (9). Then one should realize this 
axiomatic in some way. In particular, to get the algebro-geometric solutions we construct Y 
as a function (in A) on some special algebraic curve; then the formulae for solutions of (2)~ 
or (5) may be extracted from the explicit expression for Q in terms of the theta-functions 
of this curve. 

In the Emst formulation (5). (1 1) this approach was developed in [2], and in the ‘mehic’ 
formulation in [3], but the relationship between the final results-the expressions for the 
Emst potential and expressions for components of matrix g in terms of theta-functions- 
was not clear. To fill this gap one should first establish an explicit link between the linear 
systems (8) and (11) (i.e. find a A-dependent gauge transformation between connections 
U , ,  VI and U2, V2), then extend this link on the level of axiomatics of Y, and w2 and, 
eventually; on the level of related finite-gap solutions. 

Note that the Emst equation (5) may be written in the form (2) if instead of matrix g 
(3) we take 

(12) 

This matrix is Hermitian and det 82 = 1; so it sets some stationary axisymmetric solution 
of SU(2) self-duality equation in the Yang formulation. Matrix ( I / p ) g  where g is set by (3) 
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is Hermitian too, but det((l/p)g) = -1; therefore, it sets some solution of SU(1, 1) self- 
duality equation. The one-to-one correspondence between SU(2) and SU(1, 1) self-dual 
fields is given by the Bzcklund transformation of Corrigan eta1 111; (4) is a partial case of 
this correspondence for SAS solutions of special structure (3) and (12). This transformation 
looks especially simple in a triangle gauge and, as was shown in [16], is equivalent to a 
simple A-dependent gauge ('dressing') transformation of an associated linear system. After 
reduction to the SAS case it gives the transformation which may be extracted from [14]; 
below we give a more transparent form of it. 

First, it is convenient to transform *I(?') as follows: 

1 0  
0 -i 

It solves the linear system (8) with 

It is easy to verify that function 

obeys the following linear system: 

where 

and 

Define the rational algebraic curve LO set by the following equation: 

NOW, starting from some solution Y2 of the linear system (1 1) associated to the Emst 
equation (5) we can construct a new fimction 
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where 

.=(' O F  o)  
1 -1 

. ~ ~~ . (20) 
Y =  J-1' (A {)(A e )  A + ? . ~  : + - E '  . e - e  

Function p changes the sign on some contour 1 on LO between CO' and 00- (CO* are infinite 
points on different sheets of LO where o = f A  + O(1) respectively); we shall specify the 
choice of this contour below. 

Direct calculation shows.that (19) obeys the same linear system (15) as Yi; hence we 
can put 

So we can formulate the following. 

Statement 1 .  Formulae (13), (14). (20) and (21) set the relationship between the auxiliary 
linear systems (8) and (1 1) for the SAS Einstein equation. 

Now consider this link on the level of axiomatics of Y-functions and finite-gap solutions. 
Note that the linear systems for functions Y; and "2 have very similar structure of 
connection matrices (9) and (16); the only difference is the form of functions XI, Y, 
set by (17) and XZ, Yz set by (IO). 

The axiomatic for function Y2 was formulated in [2];  a slightly modified version 
presented in [I31 is the following. 

Statement 2. 

(a) Logarithmic~derivatives YqY;' and Y*qT1 are holomorphic on .CO except points 
A = e and A = $ respectively. 

(b) Y2(P) is holomorphic and invertible on LO at points A = 5 and A = (the difference 
between holomorphicity  on^ the A-plane and on Lo at branch points, for instance at 
A = 5 ,  is in the local parameters A -~e-and 

Let function Y2(P) ( P  = (0, A) E CO) obey the following conditions: 

respe&vely). 
(C) 

*z(P") = u3Yz(P)s (22) 

where U is an involution on .Cc0 interchanging the sheets; uj , j = 1,2,3 are Pauli 
matrices. 

(d) Normalization condition 

1 where E is some function of (e, g). 
Then YZ solves the linear system (11) with matrices U,, VZ set by (9) and, therefore, 

function &(e, &) obeys the Emst equation (5). ' 
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The proof is not difficult (see [Z]); in particular, expressions (10) obviously come from 
(23). 

Look at function Yi set by (21). It is easy to verify that 'U; obeys items (a) and @) of 
statement 2 ((b) is obvious; (a) follows from the same requirement for Yz and normalization 
condition (23) which provides regularity at A = CO). Besides that if we assume 

CL-'@) = PO-") (24) 
then 

M-'T(A")M = U3M-'T(A)Moj  

and, taking into account (22). 

" ; (Au)  = U~Y;(A)UZ. 

So Yi obeys item (c) too. To provide condition (24) we have to choose contour I bemeen 
CO+ and CO- setting the function p(A) on LO in some special way. Namely, condition 
(24) implies that in the ( y / g  - .$)-plane contour 1 coincides with negative reals; thus if 
we realize CO as a two-sheeted covering of the A-plane, it should have the form shown in 
figure 1. 

Fipie  1. C w e  CO is a two-sheeted mvering of the A-plane with branch points at A = 6 and 
i.=e. 

Item (d) certainly should change as XI, Y, differ from X,, Yz. Calculating Y; at 
A = 03+ according to (Zl), we get 

Yi - [ ( i - 

(25) 

where 'po and @O are coefficiens in asymptotical expansion of the first column of function 
YZ at A = CO+: 

(26) 

(27) 

+EX - 2i(m + W / ( E  + E )  
-i (e - < ) / ( E  + 6 + 2i(m + @oo)/(E + 5) 

'PO 

A (WIZ = i + - + o(A-') 

(Y2)22 = -i + - + o(A-'). *O 

A 
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It is possible to rewrite asymptotics (25) using the formula obtained in [13] for coefficient 
A in terms of the derivative of function Yz in the spectml parameter. This formula arises 
from the simple identity [ U ]  

W ' Y &  = wl(YeY-')4Y (28) 

where 6 = l/A. Substituting normalization condition (23). (9) and the expression for 
coefficient A (4) in (28). we get. 

A = A0 + 2fi(Y2fiY;')12 (29) 

where Ao is an arbitrary constant (in 1131 we used the inverse order of columns in (23); 
thus there we got 21 element in the right-hand side of (29)). Using (26), (27) one obtains 
from (29) 

YO + $0 
& + E  

A = Ao+2fi-. 

Choosing Ao = 0 we can rewrite (25) as follows: 

. .  
atA.-W+. 

So we have established the link between functions 'I'z and Yi on the level of axiomatic: 
we can claim that if Yz obeys items (aHd) of statement 2, then the function Yi set by 
(21) obeys the same conditions (a)-(c) bnd normalization condition (30) if contour I setting 
~ ( h )  in (21) is chosen according to figure 1. 

Besides that, functions Y2 and Yi related by (21) have the same set of regular 
singularities (i.e. singularities where the logarithmic derivatives are holomorphic) except 
A = cy) where components of YA have additional poles and zeros of degree a. 

This allows us to establish an explicit link between related classes of finite-gap solutions. 
These solutions were obtained first in [2,3]; the natural character of this construction is 
explained in [18] for the more general case of the self-duality equation. 

In our SAS situation the basic algebraic curve 2 is a two-sheeted covering of LO, i.e. 
a four-sheeted covering of the A-plane [2,3]. Due to reduction restriction (22) involution 
U on 2 should be inherited from LO; so the set of branch points of 2 (besides A = 5 and 
A = g) should be invariant under U :  

E j .  Fj. ET, FY ~ j = 1 , .  . . . g. , 
To provide item (a) of statement 2, one should take all Ej; F j  independent of (6, g). 

Numbering sheets of 2 by 1,. . . , 4  we assume-that the first copy of LO consists of the 
sheets 1 and 3 of 2, and the second copy of the sheets 2 and 4. Then sheets 1 and 3, as 2 
and 4, are glued at A = 5 and A = 6; sheets 1 and 2 are glued at E j .  Fj, j = 1 , .  . . , g and 
sheets 3 and 4 at ET. 7, j = I ,  . . . , g. The Hurvitz diagram of 2 is presented in [2,3]. 

According to the basic ansatz of algebro-geometric construction [IO, 11,181, the columns 
of matrix Y (A) solving (8) or (1 1) should be values of some vector-function on different 
sheets of 2 (i.e. on different copies of LO). So on the fust copy of L,, consisting of sheets 
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1 and 3 of 2 (it is enough to construct U,(P)  only on one copy of L), U,@') may be written 
in the following form: 

where (0 and @ are two scalar-valued functions on 2, point P lies on the first or third sheet 
of 2; * is an involution on 2 interchanging the copies of Lo, i.e. interchanging the sheets 
1 cf 2, 3 4 of 2. This form is the same for Y2 and U,;. but functions (p, @ should 
certainly be different 

It is easy to verify [2, 31 that the regularity of logarithmic derivatives of Y (A) set by 
(31) implies that functions (p and @ have the same set of singularities (including the orders 
of poles); besides that (p and @ should have common zeros at the zeros of det U, which do 
not coincide with branch points E j .  Fj. 

Reduction (22) (the same for U,; and U,2) may be rewritten in terms of (0 and @ as 
follows: 

where by A l l )  we denote the point on the jth sheet of 2 having projection A on C. Relations 
(32) allow us to construct (p and @ first on the hyperelliptic curve 12 consisting of sheets 
1 and 2 of C, and to extend them after that on L according to (32). Curve L is set by 
equation 

The genus of L is equal to g; it has one moving branch cut [.$, F] and g immovable branch 
cuts [Ej, Fj]  , j = I ,  ..., g. 

Denote functions (p. @ on 13 giving YZ after substitution in (31) by e, $2 and functions 
giving Qi, by V I ,  @I. According to (21) e, and (pl, $1 have the same set of singularities 
on L except point A = CO(' .~) where $12. (oz are holomorphic while (p,, @I have a pole of 
degree 4 at A = cd' and a zero of degree 4 at A = CO('). 

First write explicit expressions for (02, $2. To provide (23) it is 'enough to take 

f%(% = @AV. (33) 

As the set of singularities of (02 and @2 should be the same, condition (33) implies the 
invariance of this set under complex conjugation. In particular, it entails the reality of 
curve L, i.e. for any j one should have 

Ej = Fj or ~ Ej. Fj ER. 

Choose the canonical basis of cycles (U], bj), j = 1, . . . , g on C as shown in figure 2. 
Normalizing the dual basis of holomolphic 1-forms dUj on C according to 
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we introduce the matrix of b-periods of L 

Bjk = ff, dUk 
~. 

and the Abel map U : L + Cg 

3831 

where P  is variable and Po is some fixed point of L. Note that all these objects depend on 
(t,G), ~ ~ 

Fiiure 2. Contours I ,  i, s and canonicai basis of cycles on curve L. Continuous contours lie on 
the first sheet, dotred on the second sheet 

Finally. introducing multidimensional theta-function O(xlB) (x E Cg) associated to L 
(we shall use the brief notation O(x) ;  for more details see [2,3,13,11]) we can &i% the 
expression for M ( P )  as follows: 

where K is a vector of Riemann constants of L (depending on (t.& and PO); D = 
D I  + ... + Dg is a real (D = b) non-special divisor on L independent of (e,$);  
n I -  - 1 , j = 1 ,  . . . , g. The constant Cvz(e, i) should be chosen according to 

rp2(co'") = i . (35) 

Integral W ( P )  with vector of b-periods 2rribw is a normalized (all a-periods are zero) linear 
combination of the integrals of second and third kinds with poles and related singular parts 
independent of (e, f ) ;  it should obey the reality condition 

W(F) = W ( P )  
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(as W(P) is an indefinite integral, we understand this equation up to an arbitrary constant). 
According to (33). the expression for differs from (34) only by change of the sign 

before n/4 and by the normalization constant. 
Functions (oz(P) and r l , (P )  are discontinuous on contours between : and 5 (figure 2) 

where (oz multiplies on -i and $2 on i according to (32). 
It is not difficult to verify (see [2,3,131) that functions (oz and $2 set by (34). (33) and 

(35) define function "2 obeying items (aHd) of Statement 1 for general position of point 

Expression for the Emst potential may be obtained from (34) according to E = (oz (d l ) ) ;  
t .  

choosing the path between w(') and cd2) coinciding with contour 1 (figure 2), we have 

& =  
O(U(coCt1) - U(D) + (n/4) + bw - K ) O ( U ( C O ( ~ ~ )  - U(D) - K )  
O ( U ( O ~ ( ~ ) )  - U ( D )  + (n/4)  + bw - K)O(U(m('])  - U(D) - K )  

x exp{W(w")) - ~(oo'")}. (36) 

setting qyl by (31) should have in 
comparison with (oz and +2 an additional pole of degree 4 at cdl) and zero of degree $ 
at 0 3 ~ ) ;  the related contour I between w(') and C O ( ~ )  where qq and change the sign is 
induced on L (figure 2) from LO (figure 1); we use for these two contom the same notation 
1. 

So the explicit formula for (PI ( P )  should differ from the expression for 05 by inserting 
in the exponential factor the normalized integral of the third kind 4WLlm, having residue 
4 at P = cot') and -I 2 at P = colz1 connected by contour 1. To keep the proper behaviour 
of  PI,$^ on contour s (i.e. in respect to a round about b-cycles), one has to add also in 
the argument of the theta-function in the numerator vector of b-periods of $WLwt  up to 
factor 1/2xi, i.e. $(U(W'~ '  - U(w"'))' (upper index 1 shows that we calculate the Abel 
map between CO(') and w(') along contour I ) .  As a result we have 

O(U(P) - U(D) + (n /4 )  + bw + ~ ( U ( W ' " )  - U(c&))' - K) 

Consider qi. According to (21) functions q1 and 

O(U(P) - U(D) - K) rPl(P) = C,l 

x exp[W(P) + $ w L ~ ~ J  (37) 

where all objects are the same as in (34); C,l($, E )  is a normalization constant which should 
be chosen according to (Z), i.e. 

(D(A - w(')) - iJj;(l+ o(I)) . 
The formula for $q(P)  again differs from (nl by changing the sign before n/4 and by the 
normalization constant. 

However, the form (37) of VI (P )  does not suit us well because the reality of i A 9 l  (P) 
at A = dZ1 which is provided by our previous treatment is not quite obvious from (37) 
itself. To make this reality apparent let us represent integral i W L m l  as follows: 

4 wLm, = w+ + w- 

W+(P) = p ; 2 , ,  + wL>m,) 
W-(P) = $(WL2,, - WLZm,). 

where 



U-V pairs and Einstein-equation 3833 

Integral i WLm, induces multiplication of V I ,  $1 on i on contour I, and integral i Wk2m, 
on contour i as shown in figure. 2 (choice of the sign of this multiplication is induced by 
orientation: if we consider an arbitrary integral of the third kind WQR with residue +I at 
Q and -1 at R and go from Q to R along related path I ,  then the value of WQR on the 
right-hand side is equal to its value on the left-hand side plus 2ni; the simple example is 
WPR =Ink on CP). ~ ~ 

Integral W+(P) is Ireal', i.e. 

(as before, we understand this condition up to an arbitrary constant); its vector of b-periods 
is equal to 

bib+ = xiIm(U(cc7")) - U(co(')))'. 

Integral W- has no singularities at P = co(l,z); its vector of b-periods is 

rrin 
2 

k i b -  = - . 
Factor expW- induces multiplication of q1 on -i on the contour 1 according to figure 2, 

and on contour T in inverse direction in comparison with figure 2 as a WLlml is inserted in 
W- with a minus sign; thus expW- induces multiplication on -i on the contour 1 -i. Let us 
continuously deform contour I - into the homotopic contours through the left-hand side 
half-plane Re1 < Ret.  Functions $1 and $1 which we get in this way differ from PI and @I 
respectively in the half-plane Re1 < R e t  by factor -i on the first sheet and i on the second 
sheet; certainly and $I set the same solution of (2). Arising additional multiplication 
on i on contour s compensates multiplication of qI and on -i and i respectively on this 
contour. So $1 is continuous on s and $1 its sign changes on s. 

All singularities of @I and $1 are symmetric under complex conjugation; together with 
normalization on w") in (25) this allows us to claim that 

& ( P )  = . - G ~ ( P )  z l (P j  = -$l(P). 

This provides the necessq reality of metric coefficients according to the second column 
in (25). 

An explicit expression for $I (P) may be'written as follows: 

The expression for $1 differs by the n/2 in the argument of the theta-function in the 
numerator (and certainly by the normalization contant). 

Notice that we can add in the~argument of the theta-function in the numerator in (34) an 
arbitraq vector m consisting of 0 and (i.e. to take instead of an ordinary theta-function the 
theta-function with half-integer characteristics IO, m]).  Then to keep the proper behaviour 
on contour s we have to assume that (0, , $1 change their sign on contour ai if mi = i. 
Addition of vector m is equivalent to the choice n, = -a if mi = $; So in the expression 
for the Emst potential we can insert an arbitrary vector n consisting of f l .  The addition of 
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vector m (i.e. the jump on contour uj if mj = 4) is obviously invariant under transformation 
(21); so the related expression for $1 will differ from (38) only by insertion of vector m in 
the argument of the theta-function in the numerator (and by the normalization constant). 

Taking into account simplicity of this generalization, we proceed to choose n, = 1 (i.e. 
m = 0). 

Expression (38) and the analogous expression for GI coincide with formulae which were 
obtained in [3] for finite-gap solutions in the formalism of the BZ U-V pair if we denote 
the whole integral W(P) + W + ( P )  by W(P). 

From (38) we easily obtain explicit expressions for metric coefficients in the BZ 
formalism. Fix the behaviour of W+ at A = cd1) by 

W+(P) - - 4 h A  + o(1) 

W+(P) - $nA + c y  + o(1) cr E R at A - CO('). (40) 

(39) 

(values of InA should agree with positions of contours 1 and 7 setting W+); then 

According to (39) and (40) we get from (38) 

and from the analogous expression for GI 
A + - = ~  O(U(W"') - U ( @ )  + bw + b+ - K)Q(U(W'") - U ( D )  - K) 

& + E  d? ~ ( U ( w c l ) ) - U ( D ) + b w + b + - K ) O ( ~ ( W ( ~ ) ) - u ( D ) - K )  

x exp(W(w''') - W ( O O ( ~ ~ )  +U]. (42) 

Expressions (41) and (42) may be simplified by choosing Pa = f.  Taking into account the 
relation dU(P) = -dU(P*) (* is the involution on LO interchanging the sheets) we get in 
this case 

1 n b+ = -(U(w"') - U(o0"'))' - - 
2 4 

and 

n n b+ + U(OO"') = 4 b+ + U(W"') = ~ U ( W ' " )  - - 4 . 

so 



x O(U(c0"') - U ( D )  - K)] 
/ [ O ( - c ( D )  - (n/4) -tbw - K)O(U(CO'~')  - U(D)~-:K)I 
x exp[W(m"') - w(w"') +at. (44) 

As a result we can formulate the following. 

Statement 3. Let expression (36) set some finitegap solution of the Emst equation. p e n  
metric cwfficients A and f related to the'Emst potential (36) by (4) are set by (43) and 
(44). 

Let us make some final remarks: 

( 1 )  Expressing f = ;(& + 2) i f two different ways, from (36) and from (43). (44). we can 
get the factor expa in terms of theta-functions; substituting it into (43), (&),'we obtain 
the~formula for coefficient A in terms of theta-functions only. (Certainly expa may be 
expressed in theta-functiqns in the standard way using the so-called prime form (see 
[ I  I]); however, our simple complexanalytic treatment is more straightforward.) 

(2) If we change in (36) the sign of some ni from ~+1 to -1 (or, equivalently, insert 
some half-integer characteristic [O, m] in the related theta-function), hen the same 
characteristics should be inserted in the first theta-functions in the numerators and 
denominators of (43), (44). 

(3) We can look at the expression for A coming from (43), (44) as an explicit integration 
of the link (4) between A and E, where E is set by (36). The important problem which 
seems to be essentially more difficult is an explicit integration of the link (4) between 
k and &. 

(4) The interplay of the transformation between the Bz and MN linear systems with the 
gauge transformations was used in [I91 to generate the infinitedimensional symmetry 
group (the Geroch group) of the SAS Einstein equation. 

Acknowledgments 

Author is grateful to Professor Yavus Nutku and Professor Metin Gurses for the kind 
hospitality in Bilkent University where this work was completed. Work was partially 
supported by the Scientific and Technical Research Council of Turkey (TUBJTAK). 

References 

[I1 Conigan E F, Fairlie D B, Yaes R G and Goddard P 1978 Commun. Math. Phys. 58 223 
[21 Komtkin D A 1989 Theor. Math. fhys. 77 1018 (translated from Russian) 
[31 Komlkin D A and Matveev-V B 1990 Leningrad Muth. 1. 1 379 (transl;ued from Russian) 



3836 D A Korotkin 

[4] Belinskii V A and zawlamv V E 1978 Sov. Phys.-JETP 7.5 1953 (tanslated from Russian) 
[SI Maison D 1978 Phys. Rev. htr. 41 521 
I61 Neugebauer G 1919 J .  Phys. A: Math. Gen. 12 L67 
171 Mmeev V B 1976 Abelian funclions and solitons Universiry of Wroclawpreprim 
[SI Its A R 1985 3. Sov. Marh. 31 no 6 113 (translated from Russian) 
[9] Novikcv S P (ed) 1984 T k o v  of Solirons (New Yo*. Plenum) (hanslated from Russian) 
[IO] Krichever I M 1977 Punc. Anal. Appl. 11 11 (tanslated from Russian) 
[U] Belokolos E D, Bobenko A 1. Evolskii V Z, Its A R and Marveev V B 1993 Algebro-geometrical Approach 

ro Non-linear Evolurion Equutions (Springer Series on Non-linear Dynamics) (Berlin: Springer) 10 be 
published 

[I21 Korotkin D A 1991 Commun. Marh. Phys. 137 353 
[I31 Korolkin D A 1992 Class. Quomum G r v .  8 U 1 9  
[141 Cosgrove C M 1982 3. Marh. Phys. 23 615 
[I51 Bobenko A I 1991 Ann. Math. 290 209 
[I61 Tafel J J.  Math. Phys. 31 I234 
[I71 Burtzev S P, zawlamv V E and Mikhailov A V 1987 Theor. Marh. Phys. 70 37.3 (hanslated h m  Russian) 
[I81 Korotkin D A Self-duaiity equation: monodmmy manices and algebraic curves, to be published 
[I91 Breiienlohner P and Maison D 1987 Ann. Inst. H. Poincard 46 215 


